Porticos Designs Nuclear Medical Device

Radioactive medicines and dyes, which enable PET scanning and other modern diagnostic methods, are created by placing an organic substance in front of a particle accelerator and irradiating the substance. Then, this allows the person analyzing the data provided during this process to be able to properly view and identify what should or should not be brought to the attention of a medical professional or patient.

A local inventor and entrepreneur came to Porticos, a product design and product development engineering consulting firm in Morrisville, NC with the prototype of an “Accelerator Target” which would allow fast and economical production of a radioactive medical dye. The client asked us to optimize the size and function of the prototype while simplifying the manufacture and assembly processes.

Nuclear Medical Device diagram 2

In addition to accomplishing these tasks, Porticos’s hardware design engineers were able to create a separate “fill station” to support the device. Our engineers also helped the client establish a supply chain appropriate to the scale and schedule of the project. The production of this accelerator target allows for a much quicker process altogether, and the efficiency of having a fill station nearby to support the device makes it available for use for longer periods of time. Additionally, this technology supports PET scanning and modern diagnostic methods alike, so this also opens a window for technology to evolve in such a way that makes the use of the accelerator target more of a necessity and less of an option or alternative to what is already being used.

The product is now used in the United States and Europe, and Porticos hopes this product will continue to reach those who need it most in the medical field, as it saves time, money, resources, and is a fast, safe, and efficient way to render more timely results. Our hardware engineers remain committed to bring new, innovative products to the market, making the lives of businesses and customers simpler and better in quality.

Nuclear Medical Device diagram 3

Porticos Produces Rugged Pistol Grip

Porticos, a product design and product development engineering consulting firm in Morrisville, NC, continues to revolutionize in the world of hardware engineering and innovative technology development. One of Porticos’ most innovative projects to date is their involvement in the development of a rugged pistol grip.

Symbol Technologies, an American manufacturer and worldwide supplier of mobile data capture and delivery equipment, headquartered in Holtsville, NY, is currently a subsidiary of Zebra Technologies (Lincolnshire, IL). When Symbol Technologies came to Porticos’ hardware engineers, the pistol grip accessory proved to be an engineering and concept modeling challenge. It was a challenge Porticos was excited to meet and execute, as well as a project that remained in line with Porticos’ area of expertise.

Mechanical Concept Design

In order to most effectively create the ergonomic geometry required for the rugged pistol grip, a high-proficiency pro engineer was necessary. From an engineering perspective, it was essential for the pistol grip to pass the rugged testing that Symbol Technologies’ products have a reputation for.

In addition to the necessity to pass a ruggedness test, the interface to the main unit had to simple yet secure, while also accommodating the large number of critical interfaces. Porticos’ hardware engineers provided all of the mechanical design concept and executed the development of this product, all the way up to the successful transition to the production manufacturing source.

Porticos is proud to be part of such an innovative, essential project, and continues to shrive to create forward-thinking technology that will make as much of a mark in 40 years as it does today.

Symbol Technologies was ultimately satisfied with the concept design and execution of the rugged pistol grip, and it is currently being used in today’s market. Porticos’ hardware engineers was happy to collaborate with Symbol Technologies and offer up their expertise to ensure the production of the product was what would best suit consumers and the company overall.

Porticos Engineers Rugged Laptop

Dell, a popular developer of computers and other innovative technology, wanted to develop a ruggedized variant of a product from their laptop computer line. They turned to Porticos, a product design and product development engineering consulting firm in Morrisville, NC, for their expertise in this area.

Latitude ATG Development Challenges

The Latitude ATG is a tough, All-Terrain Grade laptop designed for industries like construction, manufacturing, oil and gas, as well as public organizations such as police forces. Built and tested to meet MIL-STD 810F—a tough military standard of durability—the Latitude ATG is designed to meet almost any physical challenge and the most demanding work environments.

Porticos’ hardware design engineers have ample experience designing products to meet the MIL-810F requirements and a history of supporting Dell on other projects, and was honored to design the ATG.

The two most challenging aspects of the ATG project were isolation of the hard drive and display, and designing the hinge and latch systems to accommodate the new design. What made the hard drive even more difficult a task was the need for it to fit into the same space currently allocated in the non-ATG D620 Latitude platform. The solution was to take a physically smaller Hitachi hard drive, and design a protective case that would function as the interface to the existing electrical connections. This also effectively protected the hard drive from shock and vibration.

The hard drive with it’s mated rigid flex was secured in a frame molded from EAR Specialty C8002 isolation material, then sandwiched between two sheets of 3M “G Sheet.” To meet the thickness limitations while still addressing stiffness goals, a titanium stamping was mated to a magnesium casting to form the mechanical enclosure. Similar isolation solutions were chosen to support the display.

After modeling the hinge mechanism and latches in Pro-Engineer, Porticos’ hardware engineers conducted finite element analysis (FEA) using the COSMOS analysis tool. The design was optimized to address high-stress areas, and the results were shared with the manufacturing source.

In addition to the structural analysis conducted, Failure Mode Effect and Analysis (FMEA) and Design For Assembly (DFA) were conducted. The feedback was then incorporated into the final Pro-E 3D CAD geometry and drawings.

With its shock-mounted, removable hard drive, shock-mounted LCD screen, a dust and spill-resistant keyboard, port covers and highly durable, textured paint to protect against scratches, scuffs and daily wear, the Latitude ATG is prepared for life working in the field.

Porticos Develops RFID Reader

Porticos, a product design and product development engineering consulting firm in Morrisville, NC, has developed many products for the Sirit—currently owned by 3M—portfolio. The RFID reader unit displayed is a good example of the type of products Porticos’ hardware engineers are not only capable of conceptualizing, but producing.

Product Design Concept

The harsh industrial environment in which items such as RFID readers can be developed require IP protection. To ensure IP protection, effectively securing the safety of consumers in the future, Porticos’ hardware engineers prioritized the ability to test the RFID reader in a safe environment. They worked hard allow space in their process for trial and error, while not sacrificing the security of the project overall.

The electronic functionality requires complete RF isolation from the outside world, as well as between the digital and RF sections inside of the unit. The high-power output for the transmitter required creative thermal management solutions. During the design concept process, Porticos kept in mind the need to execute all requirements while not jeopardizing the cost, time spent in production, or build quality.

Their solution was to integrate 3 separate sections—RF, Digital and Power Supply—within the enclosure design. Porticos’s hardware engineer team conducted a thermal analysis to determine the most efficient means of handling the heat dissipation without requiring force cooling, otherwise known as fans. The resulting housings were die cast aluminum, with secondary operations for the cosmetics and critical sealing surfaces. These housings were manufactured by Porticos’ partner Funfiek.

The final product passed all radiated emissions and thermal tests with no issues. This resulted in the implementation of the reader into products on the market today. RFID readers are quickly becoming the most necessary piece of technology that many companies are looking to integrate into their products.

Porticos is proud to have worked diligently on such an essential, innovative piece of technology that is essential for the future.