Porticos Produces Rugged Pistol Grip

Porticos, a product design and product development engineering consulting firm in Morrisville, NC, continues to revolutionize in the world of hardware engineering and innovative technology development. One of Porticos’ most innovative projects to date is their involvement in the development of a rugged pistol grip.

Symbol Technologies, an American manufacturer and worldwide supplier of mobile data capture and delivery equipment, headquartered in Holtsville, NY, is currently a subsidiary of Zebra Technologies (Lincolnshire, IL). When Symbol Technologies came to Porticos’ hardware engineers, the pistol grip accessory proved to be an engineering and concept modeling challenge. It was a challenge Porticos was excited to meet and execute, as well as a project that remained in line with Porticos’ area of expertise.

Mechanical Concept Design

In order to most effectively create the ergonomic geometry required for the rugged pistol grip, a high-proficiency pro engineer was necessary. From an engineering perspective, it was essential for the pistol grip to pass the rugged testing that Symbol Technologies’ products have a reputation for.

In addition to the necessity to pass a ruggedness test, the interface to the main unit had to simple yet secure, while also accommodating the large number of critical interfaces. Porticos’ hardware engineers provided all of the mechanical design concept and executed the development of this product, all the way up to the successful transition to the production manufacturing source.

Porticos is proud to be part of such an innovative, essential project, and continues to shrive to create forward-thinking technology that will make as much of a mark in 40 years as it does today.

Symbol Technologies was ultimately satisfied with the concept design and execution of the rugged pistol grip, and it is currently being used in today’s market. Porticos’ hardware engineers was happy to collaborate with Symbol Technologies and offer up their expertise to ensure the production of the product was what would best suit consumers and the company overall.

Porticos Engineers Rugged Laptop

Dell, a popular developer of computers and other innovative technology, wanted to develop a ruggedized variant of a product from their laptop computer line. They turned to Porticos, a product design and product development engineering consulting firm in Morrisville, NC, for their expertise in this area.

Latitude ATG Development Challenges

The Latitude ATG is a tough, All-Terrain Grade laptop designed for industries like construction, manufacturing, oil and gas, as well as public organizations such as police forces. Built and tested to meet MIL-STD 810F—a tough military standard of durability—the Latitude ATG is designed to meet almost any physical challenge and the most demanding work environments.

Porticos’ hardware design engineers have ample experience designing products to meet the MIL-810F requirements and a history of supporting Dell on other projects, and was honored to design the ATG.

The two most challenging aspects of the ATG project were isolation of the hard drive and display, and designing the hinge and latch systems to accommodate the new design. What made the hard drive even more difficult a task was the need for it to fit into the same space currently allocated in the non-ATG D620 Latitude platform. The solution was to take a physically smaller Hitachi hard drive, and design a protective case that would function as the interface to the existing electrical connections. This also effectively protected the hard drive from shock and vibration.

The hard drive with it’s mated rigid flex was secured in a frame molded from EAR Specialty C8002 isolation material, then sandwiched between two sheets of 3M “G Sheet.” To meet the thickness limitations while still addressing stiffness goals, a titanium stamping was mated to a magnesium casting to form the mechanical enclosure. Similar isolation solutions were chosen to support the display.

After modeling the hinge mechanism and latches in Pro-Engineer, Porticos’ hardware engineers conducted finite element analysis (FEA) using the COSMOS analysis tool. The design was optimized to address high-stress areas, and the results were shared with the manufacturing source.

In addition to the structural analysis conducted, Failure Mode Effect and Analysis (FMEA) and Design For Assembly (DFA) were conducted. The feedback was then incorporated into the final Pro-E 3D CAD geometry and drawings.

With its shock-mounted, removable hard drive, shock-mounted LCD screen, a dust and spill-resistant keyboard, port covers and highly durable, textured paint to protect against scratches, scuffs and daily wear, the Latitude ATG is prepared for life working in the field.

The Smallest BioMedical System

Porticos and Device Solutions worked closely to optimize placement efficiency to create the smallest BioMedical system package possible. This was especially important for both units because power consumption needs to support a 30-day transmission period, which is provided by a large battery cell.

Ambulatory ECG Monitoring System Product Development

BioMedical Systems (now part of ERT), has been providing medical data analysis and support for physicians and their patients for nearly 40 years. They saw a need for a mobile cardiac telemetry system that could take advantage of their sophisticated arrhythmia analysis software, record the data and transmit that information in real time to a group of certified cardiac technicians. To make their vision a reality, they came to Porticos and Device Solutions—one of Porticos’ partners—who experienced in hardware and software development for wireless devices. Herein, the TruVue™ product was born.

The TruVue™ system consists of a patient-worn ECG recording device, a hand-held device that receives and analyzes the information from the recording device. The device then transmits the real-time data to the BioMedical Systems headquarters in St. Louis, where the data is analyzed further and formatted for easy access by the physician.

Porticos’ hardware engineers created the 3D CAD data using Unigraphics software. Bluetooth was chosen as the wireless communication protocol between the patient-worn device and the hand-held device, while GSM-based-cellular was used to transmit between the hand-held and the cardiac center.

In order to minimize detuning of the chip antenna in the patient-worn device, snap features were incorporated into the PC/ABS housings to limit the need for metal assembly hardware. FEA was conducted in Ansys to ensure snap features would remain secure during normal use and drop scenarios.

One of the unique features for the hand-held was the keypad. In order to support the user interface and reduce confusion to the patient, the keys had to be individually backlit and, at the same time, isolated from the surrounding keys. This way, as the menu options changes on the display, only the keys applicable for those options would be lit. The result is deceptively simple-looking keypad, that integrates mechanical and software user interface to create an intuitive and positive experience for the patient.

Hardware Production Results

Thanks to the hard work of Porticos and Device Solutions, the US Food and Drug Administration (FDA) granted Biomedical Systems 510(k) clearance to market TruVue™, a truly wireless ambulatory ECG monitoring system. Additionally, TruVue™ has made its mark as the industry’s first cardiac Mobile Telemetry system that analyzes, records and transmits every heartbeat for up to 30 days.